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SUMMARY

In order to stabilize norm&L shock waves in channel flow against
the effect of disturbances originating downstream, a method based on
mass removal from the channel by means of a surge chamber was developed
and experimentally tested in an intermittent blowdown-type wind tunnel
at Corne12 University. A theoretical analysis of the flow h a chsmnel
shape similar to that used in a typical double-throat supersonic wind
tunnel indicated that the mass-removal technique was effective in damping
the motion of the normal shock caused by a strong compression pulse
originating downstream. The results of experimental tests were in quan-
titative agreement with the theoretical analysis. Further experiments
indicated that the mass-removal technique was effective in damping the
oscillatory motion of the normal shock caused by continuous small, random,
downstream tisturbsnces.

INTRODUCTION

An important factor in the desi~ and operation of supersonic wind
tunnels is their large power consumption. A large part of this loss
results from the fact that supersonic channel flow can be converted into
subsonic flow only through a normal shock wave (see ref. 1). A success-
ful method for reducing this powerloss is to lower the Mach number at
which the shock occurs. This method has led to the use of the “double-
throat” type of supersonic wind tunnel.

For the most efficient operation of the double-throat wind tunnel,
the normal shock is placed in a position just downstream of the second
mtiimum section. However, disturbances originating downstream in the
diffuser and exhaust system will interact with the normal shock and cause
lThe bdvof this rePort is a thesis ’whichwas submitted in February19~

in a p&tial fulffient of the requirements for the degree of Master of
Aeronautical Engineering in the Graduate School of Aeronautical Engineer-
ing, Cornell University, Ithaca, New York.

2Now at the Ames Aeronautical Laboratory, Moffett Field, Calif.
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2 NACATN 2694

it to be displaced from its original position. If these disturbances
are strong enough, they can cause the shock to be permanently displaced
to a position upstresm of the test section. Subsonic flow will then
exist in the test section and the wind tunnel is said to be “unstinted.”
In order to avoid this highly undesirable condition, it is often neces-
sary to place the normal shock quite far downstream of the second mini-
mum section. Operation with the shock far downstream of the second
throat results in an ticreased power loss and defeats partially the pur-
pose of the second minimum section.

The power consumption of the double-throat wind tunnel could be
reduced if there were a suitable method for stabilizing the normal shock
against the effect of these disturbances, thus permitting the shock to
be placed closer to the second minimum section. It is the purpose of
this paper to show how the use of a surge chamber, connected to the chann-
el immediately upstream of the operating position of the normal shock}
can produce the desired stability.

The author is grateful to Professor Arthur R. Kantrowitz for his
suggestion of the topic, advice throughout the investigation, and for the
information contained in Appendixes A and
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u velocity of shock wave

u velocity of fluid

x station along channel

Y ratio of s~ecific heats

P density

7 entropy

Subscripts .

a conditions behind steady-flow normal shock

b conditions behind leaiihg edge of pulse

c conditions at rear of pulse

s conditions relative to moving shock wave

o standard conditions

1,2,3,4,5 conditions in various sectors of the characteristic
diagram

Superscript

average values

T13EORE?l?ICALCONSIDERATIONS

Stability of Normal.Shock Waves
in Chsmnel Flow

In the normal operating contition of a conventional double-throat
supersonic wind tunnel, the shock wave converting the supersonic flow
to subsonic flow will occu downstream of the second minimum section as
shown in sketch (a).. The normal shock wave in this case is in its pri-
mary stable equilibrium position which means that it will return to this
position after undergoing small displacements.

.— — .— —. .
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Sketch (a)

two other equilibrium positions, also shown in sketch (a)’,
points in the channel where the channel area is the same
the primary stable equilibrium position. At the indicated

There are
which occur at
as the axea at
position in the converging part of the channel, the normal chock is in a
condition of unstable eqtibrium. Consequently, if the shock were to
exist in this position, then any displacement, however small, would cause
the shock to assume either stable position, depending upon the direction
of the displacement. .

Displacement of the normal shock from the primary equi~brium posi-
tion can be caused by disturbances originating downstream. These dis-
turbances propagate upstresm through the subsonic flow in the diffuser
section and interact with the main shock. The resultant shock is then
set in motion aud will undergo a displacement proportional to the
strength of the disturbance. As pointed out ti reference 1, a compres-
sion disturbance will cause the shock to be displaced upstream in the
direction of the unstable equilibrium position. If the compression dis-
turbance is strong enough to cause a displacement of the shock upstresm
of the unstable equilibrium positim, then, as has been pointed out, the
shock wild assume the secondary stable equilibrium position shown in
sketch (a). Subsonic flow will then exist in the test section, and the
tunnel will be unstarted.

Operation of the Surge Chsmber

In the method presented herein, the shock position is stabilizedby
the appropriate use of a surge chamber, which, in effect, creates a
counterdisturbancewhich neutralizes the action of a compression disturb-
ance coming from downstream.

— —
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.

The surge chsmber is connected to the channel (see sketch (b)) by
transverse slits at a point just upstresm of the primary equilibrium
position. In the normal running condition, the surge chamber is at the
ssme pressure as that existing in the channel at the position of the
slits. The normal shock, set in motion by interaction with a compression
disturbance, crosses the slits, thus raising the pressure in the channel,
and causes air to flow out of the channel into the surge chamber.

Surge
chamber

‘w
Sketch (b)

of mass in this manner, in effect, produces an expansion
throughout the channel. Psrt of this expansion inter-

The removal
which propagates
acts with the upstream-moving shock wave and dissipates some of the
ener~ supplied by the initial compression disturbance. By varying the
opening of the transverse slits, a sufficiently high rate of mass
removal may be obtained to brtig the shock wave to rest before it passes
the unstable equilibrium position. A normal shock brought to rest in
this manner will.then return to its primary stable equilibrium position
downstream of the second midmum section.

By the application of the method of characteristics for nonsteady
.one-d.imensionalflow, it is possible to trace the interaction of the
normal shock and compression pulse on a time-displacement diagram aud to
determine the effect of mass removal to the surge chamber. In order to
analyze this problem, however, it was necessary to develop au extension
to the existing method of characteristicswhich includes the effects of
mass removal from a point in the channel.
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The Method of Characteristics lhcluding the
Effect6 of Mass Removal at a Point in the Channel

“

The method of characteristics for isentropic, intiscid, nonsteady,
one-dimensional flow in a @annel of constant cross section was first
introduced in 1859 by Riemann (ref. 2). In reference 3, the work of
Riemann was etiended to include variations in entiopy and channel acea,
while in reference k the effects of heat transfer were considered in
some detail. The genersl procedure followed in those papers, and
exploited in the present analysis, was to define certd.n characteristic
quantities from considerations of the one-dimensional equations,of “
motion and continuity. These ~acteristic quantities, designated as
P and Q,= are associated with the two families of characteristics in the
flow field.

In the present
modified to include
mass removal on the

-sis the eqUtiOnS of continuity and motion sre
mass removal from the channel,.and the effect of
chsrwteristicquantities, P and Q, is determined.

The equation of continuity

.

for one+ensional flow is

$ (Pus) = o (1)

If, however, mass is removed from the channel through openings in
the walls, the continuity equation takes the following form:

(2)

In the present analysis it is assumed that the mass is removed from

the chsmel at a constant rate
()%=0 “

Consequently, the equation

of motion for one-dimensional

auz+

flow remains unchanged as

(3)

.
3~ese qumtities, as used ~ reference~ 3 ~d 4 as well.as the present

snalysis, differ only by a factor of .2from the Riemann invariant as
given in reference ~.

.

—.. —— — ——
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With the aid of the first law of thermodynamics, the equatinn for
the entropy of a perfect gas can be written in the fo130wing differential
forms:

d~ 2CV_. = d(lo~a) -d(lo% P)
RR

al-l 2CP
—=
R

~d(lo~a) -d(lo&p)
)

(4)

By the use of equations (4) and the equation of state for a perfect
gas in the fo~ p/P = RT, equations (2) and (3) can be brought into the
following forms, respectively:

2CV >a 2cvu~a & b(lOge S)
——-f—— —+a —+ua

R& Raxax ax -
\ (51

By adding and subtracting equation
following relations =e obtained:

a2 an
o (6)

-Z&=

(6) from equation (~), the

) a(lowS)
u+ua

ax-

0

saq aDV+ah=o——- _
7R ax R Dt Zz

(7)

t

1

.——.
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i)a%==+”= (8)

defines an observed rate of change while moving with the fluid particles
at a velocity u.

The characteristic quantities, P and Q, are defined as

(9)

2+
Q=~ahu

1

and the observed rate of change while moving along a characteristic line
in the fluid is defined symbolically as

where tic plus (+) or minus (-) signs are associated with P and Q fam-
ilies of characteristics,respectively.

Rcom the definitions of equations
be written as

wliich
along

f

(9) ~a (10), equation (7) can

t5Q b(logeS) a2 ~ + a Dq a b——. ——
‘-m~-zax RK-

expresses the rate of change of the
their.respective paths.

Dt ~S ax

characteristic

(IL)

qmtities

— —
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.

From equation (10), the following can be deduced:

Along a P characteristic

Along a Q characteristic
(12)

T!hechsmnel srea of a wind tunnel will depend only on the station
along the chsmnel. Consec@ently, the rate of change of this quantity
along P ~d Q chsxacteristies,with the aid of equation (10), is

5(10* s) a(lo% S)
— =(u+a) ~

bt p

I

(13)

b(lOge S)

I

a(logeS)
=(u -a) ax

bt
J

Q

Since the remoti of mass from the channel has been assumed to take
place at a constsnt rate, the change in mass flow is, therefore, a
function only of the distsnce slong the channel. From equation (10) the
rate of change
expressed as

of this quantity along the characteristic lines csn be

5m I .(u+a)$
SP

1
(14)

.

——— —-—-—-———— —
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With the aid of equations (12), (13),and (14),and noting that the
particle entropy change DV/Dt will be zero in the absence of heat

,

transfer and shock waves, the miations in the characteristic quantities
will then be .

t 5P=- JL5(lo&S)+~bT - a F3m
u+a PS(u+ a)

1

I (15)

8Q = -~15(lo*S)+~Eiq- a 13m ‘ ,
u-a YR pS(u - a)

It should be pointed out that the quantity 5m widl itself have a
positive or negative sign, depending upon the direction (upstream or
downstream) which a characteristic crosses the point of mass removal.
The quantity ~m can also be expressed in the following form:

am
5m=—Ax

ax
(16)

where h/ax is positive if mass is removed from the channel and m
wilJ be positive for the downstream direction.

The magnitude of the quantity bm can readily be evaluated by con-
sideration of the equations of continuity and momeniximreferred to the
dimension perpendicular to the channel. A simplification is possible,
however, since the pressure rise across the shock wave, the pressure
difference between the channel and the surge chamber, is generq
sufficiently large so that the flow through the slits is choked. In
this case, therefore,

]5m[=p*a*A (17)

and the variation of P and Q, produced by mass removal only, reduces to

l~Q]= a2 ~a*A
(u-a)pa S

J

(18)

—. -. —.
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In equation (18), the ambient stresm quantities in the channel correspond
to stagnation conditions with respect to the cross flow through the
transverse slits. Consequentlyj the followlng ratios =e constauts:

p*
— = 0.634
P

#=0913
a“ 1

(19)

The resultant magnitudes of P and Q, due to mass removal, and assuming
the flow through the slits is choked, are

(20)

The effects of shockwaves and large entropy discontinuities are
not included in the foregoing theoretical considerations. Both $hese
effects were present in the analysis by the method of characteristics.
A discussion of how these effects are hsmdled is given in Appendix A.

In performing the characteristics analysis, it was also necesssry
to consider three types of interactions involving shock waves; namely,

1. Interaction of the pulse shock with the steady-flow normal
shock

2. bteraction of the resultant shock with the flow out of the
channel at the instant the shock crosses the transverse
slits which open into the surge chamber

3* hteraction of the resultant shock with expansion waves
from downstream which “catch up” with the shock and
change its strength

The method of solution for each of these interactions consists of a
series of successive appro~tions and is discussed in Appendix B.

—. _——— ..
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APPLICATION TO

Preliminary Considerations

Shape of chsmnel.- The method of characteristics as developed herein
was used to study the stability of the steady-flow normal shock in a
small double-throat supersonic wind tunnel equipped with a surge chamber.
The contour of the channel is given in figure 1. The Mach numbers at the
test section and the second throat were 1.64 snd 1.42,respectively. The
supersonic psrt of the channel was designed according to the steady-flow,
.two~dhensional method of characteristics. A diffuser half angle of 2°
was used in order to minimize separation losses in the subsonic part of
the flow. In the operating conditim, the equilibrium position of the
normal shock occurred 5.8 inches downstream from the first minimum
section, that is, 1.3 inches downstream of the second throat and 0.3
inch downstream of the transverse slits. The Mach number immediately
upstream of the normal shock was 1.55.

Construction of velocity profiles.- With the shape of the channel
and the position of the normal shock now specified, the steady-flow
velocity profile was computed and is shown in figure 2. The initisL
properties of a pulse originating downstream in the tiffusor section =e

.

generally not known since they may arise from a variety of causes. It
was shown in reference 1, however, that the velocity profile of a pulse
takes a definite shape as it travels upstream, regardless of the condi-
tions at its Origi.Uj the upstresm section of a compression pulse will
steepen to form a leading-edge shock, while the velocity profile of the
expansion phase of the pulse behind this shock will assume a slope given
by

()du ()

du
z

=-
pulse G

steady flow

AU the disturbance pulses considered in this analysis are compres-
sion pulses hatig this shape of velocity profile. Two such pulses are
shown in figure 2, superimposed on the steady-flow velocity profile at
the position of impentig intersection with the steady-flow normal.shock.

Determination of initial flow conditions.- ti order to stswt the
characteristicsanalysis, the flow conditions, including the values of
the characteristic quantities (eq. (9))must be determined at all points

●

in the channel at the time of the intersection of the pulse shock with
the steady-flow normal shock. The details of this computation are given .
in Appenti C.

—.—
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AnalyBiB and Results

The method of characteristicswas first applied to the chsmnel,
without mass removal, to find the “critical” pulse, that pulse w~ch wilJ
supply sufficient ener~ to displace the normal shock to the unstable
equilibrium position and, hence, unstsrt the flow. The order of magni-
tude of the critical pulse can be determined accor~g to the methods
of reference 1 where it was shown that, in the vicinity of Mach number 1,
the velocity-profile area of the critical pulse4 will be equal to the
area between the steady-flow velocity profiles formed by the normal
shock in the stable and unstable equilibrium positions (see fig. 2).
This rule will, of course, give errors for Mach numbers greater thau 1
but can be used as a first approximation. The present analysis, using
the method of characteristics, showed that the criticsl pulse had a
velocity-profile mea about 68 percent of that given by reference 1.
This result is in agreement with an investigation described in reference
6 which indicated a velocity-profile area of approXtely 65 percent.
The critical pulse is the smaller pulse shown in figure 2. A time-
&Lsplacement history of the resultant shock formed by the interaction of
the critical pulse with the steady-flow normal shock is given in figure 3.

It was decided, as an appropriate measure of the effectiveness of
the surge chamber, to determine the size of transverse slit necessary
to.prevent unstarttig of the flow by a pulse having a velocity-profile
area double that of the critical pulse already determined. This double
critical pulse is the larger pulse shown ti figure 2. Figure 3 also
presents time-displacement di~sms for the resultant shocks formed by
the interaction of the steady-flow normal shock with the double critical
pulse for the fo12.owingconditions: no mass removal, l/8-inch transverse
slits, l/k-inch transverse slits. It is evident that l/&inch slits =e
close to the smaXLest size which will dissipate the action of the double
critical pulse.

~ all cases, the pressure in the channel, at the point of mass
removal, was sufficiently large to cause the mass flow into the surge
chamber to be choked, thereby allowing the use of equation (19) to com-
pute 5P and 5Q across the slits.

Part of the experimental
generating strong compression

EXI?ERIMENT

phase of this
pulses in the

investigation consists in
flow and obserri.ngthe inter-

action of the pulses with the steady-flow normal.shock for the wind
4The velocity-profile area of a p-se is tie area betiem the stedy-flOW

velocity p~ofile of the channel ~d the velocity profile imposed by the
pulse.

-- ——-—— ——. —.— _ .-—— . . -- . .—
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tunnel in one of the two following operating conditions: (a) slits into .
surge chamber closed, no mass removal; snd (b) slits into surge chamber
open 1/4 inch. By means of a modified shock tube, it was possible to
generate pulses ha-g a velocity profile approximately the same as
those used in the characteristics analysis. Hence, these experimental
tests could parallel the analytical studies by determining the relative
strengths of the strong pulses which would just unstart the flow under
the stated operating conditions.

A further check on the effects of mass removal was made by operating
the wind tunnel with the normal shock just downstream of the transverse
slits and observing the effectiveness of the surge chamber in damping
the movement of the shock caused by the incidence of sma12 random dis-
turbances. Since small random disturbances are encountered more often
than strong pulses, it was felt that this test might be more representa-
tive of actual operating conditions.

Apparatus

Wind tunnel and optical system.- The experimental tests were car-
ried out in a small intermittent supersonic wind tunnel in the gas dynsm- .

ics laboratory of the Graduate School of Aeronautical.Engineering,
CornelJ University. The width of the channel was 1 inch. The only modi-
fications to the tunnel were the construction of new nozzle blocks, as
shown in figure 1, and the constructia of a bracket for mounting the
pulse-generating device at the end of the diffuser. The transverse
slits, which connect the channel to the surge chamber, were adjustable
to allow sm opening up to 1/2 inch. The surge chsmber was designed to
be large enough so that the pressure would not change appreciably within
the length of time necessary for the shock to travel from the stable
equilibrium position to the unstable equilibrium position and return.

The optical.apparatus consisted of a schlieren system of conven-
tional desig and was provided with two light sources. A continuous
light source was used for visual observation and also, in conjunction
with a conventional csmera shutter, for taking schlieren pictures with
exposures of 1/2’5second. The other light source, used for photography
only, was a high-intensity spark having au effective duration of 1 micro-
second.

Pulse tube.- The compression pulses were generated in a small shock
tube which was mounted on the end of the diffuser. The shock tube,
called a “pulse tube,” differs from the conventional design, described
in reference 7, in that the rearward wall of the high-pressure chamber

.

is placed close to the diaphra@. The longitudinal dimensions are pro-
portioned so that the front of the expansion wave reflected from the back -
wall Just overtakes the shock at the forward end of the tube. At this
instant the velocity distribution over the length of the tube decreases

.— .— — .—. — — —
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almost linearly from a large negative value behind the shock to a very
smalJ positive value at the rem of the pulse. Figure 4 presents a
typical analysis by the method of c~acteristics of the flow in the
pulse tube together with a plot of the velocim profile. It wiIL be
recalled that the velocity profile of the compression pulses used in the
theoretical analysis (see fig. 2) @reps discontinuously through a shock
wave to a lsrge negative value and then increases almost linearly to
zero. Hence, the pulse tube”generates a compression pulse with the cor-
rect shape of veloci~ profile needed to check the prediction of the
theory.

The following tiensions of the pulse velocity profil.eme required:
(a) the velocity discontinuity at the shock front, and (b) the velocity.
profile area. The velocity discontinuity at the shock front of the pulse
is determined by the initial pressure ratio across the diaphr~. The
sxea of the pulse can be adjusted to the required value by chsm@ng the
over-all length of the pulse tube. The pulse tube can be desigued to
give precisely the reqyiredvelocity-profile area correspondingto only
one particular value of the velocity discontinuity at the shock front.
At other values of velocity discontinuity, the profile area obtdned in
the pulse tube will differ slightly from the profile area required in
the theoretical analysis. This difference, however, was found to be less
than 4 percent throughout the range of values employed in the e~eriment.

The pulse tube was designed according to the dimensions of the
double critical pulse shown in figure 2. This pulse had a veloci~ dis-
continuity,Au/ao, across the shock front of 0.515 and a velocity-profile
area of 1.57 (units of u/~ x tithes). It was anticipated, however,
that there would be losses in pulse stren@h caused by the pulse travers-
ing the gap between the end of the pulse tube and the end of the dif-
fusorj as we12.as losses resulting from the separated flow in the
diffuser. It was estimated that these losses would cause a reduction in
the over-alJ pulse velocity profil’eof 20 percent. For purposes of
design, therefore, the dimensions of the double criticsilpulse were
increased by 20 percent which brought the velociw-profile area to a
value of 1.90 (units of u/~ X inches) and a leading-edge velocity
discontinuity,Au/ao, of o.61o. Two additional analyses were carried
out for weaker pulses. Rrom these analyses the relation was determined
between the velocity-profile mea and initisllpressure in the high-
-pressurechsmber of the pulse tube. The graph of this relation is pre-
sented in figure 5.

Figure 6 shows the entire test setup with the pulse tube in its
operating position at the end of the chaunel. A larger photograph of the
pulse tube is shown in figure 7. Also shown in figure 7 is the diaphra@
rupture mechanism which consisted of a needle attached to a solenoid
switch. Closing the circuit of the solenoid switch caused the needle to
be displaced tiward, thus rupturing the diaphragm. Due to the deflection
of the diaphragn under pressure, a filler plate was attached to the back
wall of the high-pressure chamber (see fig. 8). The size of this plate

—
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was approximately equal to the added volume caused by the diaphragm
deflection and, consequently, acted to keep the pulse size closer to
that dictated by the theoretical design.

Procedure

h order to study the effect of mass removal against the action of
the compression pulses from the pulse tube, tests were conducted with
the transverse slits 1/4 inch open and were repeated with slits closed.
The procedure in both cases was to fill the high-pressure chamber in the
pulse tube to a desired pressure, then stsrt the wind tunnel and bring
the normal shock t-oits proper position downstream of the second throat.
The diaphrs@ of the pulse tube was then punctured. The effect of the
interaction of the compression pulse with the steady-flow normal shock
was observed on the schlieren screen: Either the normal.shock returned
to its stable equilibrium position downstream of the second throat or was
driven to the secondsry stable equilibrium position upstream of the test
section. These tests were repeated with different values of pulse-tube
pressure until that pressure corresponding to the critical pulse was
determined.

In order to determine the effect of mass removal against the action
of smalJ random disturbances, a second series of tests was c~ried out
with the air flow from the end of the diffuser partially blocked. The
sharp diversion of,air at this point created randcnnpressure variations
which were propagated upstream through the tiffusor. It was felt that
the disturbance level created in this manner would correspond roughly
to disturbances produced by the exhaust system of m actual wind tunnel.
For this part of the experiment, the normal shock was placed in a posi.
tion at the downstream edge of the transverse slits. The effect of mass
removal to the surge chamber was observed by comparing the oscillation
of the normal shock when the s~ts were 1/4 inch open with the oscil-
lations present when the slits were closed. An attempt was made to show
this effect by taking schlieren photographs with a spark (l-microsecond
exposure) and with an exposure of l/25 second. The normal.shockwave
was photographed at both these exposures, first with the slits open
1/4 inch and then with the slits closed. If mass removal is effective
in damping oscillations of the shockwave, there will be a close simi-
larity between the l/25-second and l-microsecond exposures.

RESULTS AND DISCUSSION

The experimental tests to determine the effect of mass removal
against the action of strong compression PuJ-sesrevealed that the pulse
necessary to unstart the tunnel with l/4-inch trsmsverse slits was

.
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produced by a pulsd-tube-chamber pressure of approximately 62 psi gage.
With the transverse slits closed, the pulbe necessary to unstart the
tunnel was produced by a pressure of about 28 psi gage. As shown in
figure 5, the velocity-profile areas corresponding to these pressures
are 1.80 and 0.87, respectively. The veloci~-profile area of the pulse
required to unstit the tunnel with l/k-inch slits is approximately
double the area required with slits closed. This result is in agreement
with the theoretical analysis, as shown in figure 3, which predicts that
the action of the double critical pulse will be dissipated by mass
removal through l/4-inch transverse slits.

The second series of tests demonstrated the effect of mass removal

7

ainst the action of smalJ rsndom disturbances. With the slits open
1 4 inch, the normal shock was never driven upstresm by the random Ms-
turbances, and a marked decrease in the oscillation of the normal shock
was noted as compared with the,oscillations present when the slits were
closed.

Schlieren photographs, with exposure times of l/25 second and 1
microsecond, were taken with the transverse slits both closed smd open
smd are presented in figures 9 smd 10, respectively. The oscillatory
motion of the normal shock, caused by the random disturbances, can be.
observed in figure 9 by noting the difference in clarity between the
photographs taken at the two qosure times. The effect of mass removal
in dsmping these oscilll.ationsis to be observed by comparing the relative

“ clsrity between the l/25-second exposures of figures 9 and 10 and, also,
by noting the similarity between the l/25-second and l-microsecond expo-
sures of figure 10.

When taking sehlieren photographs, the shock could not be positioned
visually because the visual screen was blocked by the photographic plate
holder. Au approximate shock position was fixed by reference to the
setthg chsmber pressure. Under these conditions it was difficult to
photograph the normal shock at a desired average position. As a result
of this difficulty, the photographs of figure 10 show the normal shock
at an average position farther downstream from the transverse slits thsm
was desired. Although some dsmping is indicated by the relative clarity
of the l/25-second exposure in figure 10, as compared to the l-microsecond
exposure, the effect is not as striking as was observed visually.

CONCLUDING REMARKS

.

In order to stabilize normal shockwaves in channel flow against
the effect of disturbances originating downstream, a method based on
mass removal.from the chsmnel by means of a surge chsmber was developed
at Cornell Univers~ty. The stabilizing action is initiated by the motion

of the ‘tPsdY-- w norm&1 shock caused by the Ustibsnces and requires
the u. “?no ad& Lional-power facilities.

——.—. — —.————.—
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With the use of the method of chmacteristics (extended to include
mass removal at a point in the channel), the flow was analyzed in a than. ●

nel shape similsr to that used in a double-throat supersonic wind tunnel.
It was found that the mass-removal techn@e -S effective h -tig the .
motion of the normal shock wave produced by strong compression disturb-
ances.

To check the findings of the theoretical anslysis, a series of
expertiental tests was performed in a small double-throat wind tunnel into
which compression disturbances of known strength were introduced by a
pulse generating device. The experimental results were in quantitative
a~eement with the results of the theoretical analysis. An additional
series of expertiental tests was performed in which it was found that the
mass-removal technique was effective in damping the oscillatory motion
of the steady-flaw normal shock caused by small random disturbances.

JRcomthe theoretical and experimental results, it can be concluded,
therefore, that the mass-removal technique is effective in stabilizing
normal shock waves against compression disturbances originating down-
stream, and that the performance can be accurately computed by the method
of characteristics.

.

Ames Aeronautical Laboratory
National Adtisory Committee for Aeronautics

Moffett Field, Calif., Mar. 31, 1953

— .—.—
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APPLICATION OF

ACROSS

APPENDIX A

THE METHOD OF CHARACTERISTICS

STRONG DISCONTINUITIES

Normal Shock Waves

The change in each of the characteristic quantities, P and Q, and
the entropy,v , across a normal shock wave may be computed using the
customary Rankine-Hugoniot relations. However, in the construction of
characteristic diagrams where solutions across shock waves sre required
many times, it has proved convenient to prepare two auxiliary charts to
facilitate these computations. To begin with, it is desirable to define
the two classes of shock wves. A P shock is defined simply as a shock
wave which, on a the-displacement diagram, is moving to the right rel-
ative to the fluid. Conversely, a Q shock is a shock wave that moves
to the left relative to the fluid. In addition, W velocities are taken
to be positive for movement from left to right and negative from right
to left.

The first of these awdliary
charts expresses the change across
a shock wave in the quanti~ P in

/////////////////////////////////

terms of the corresponding chauge 2
in Q. Consider a P shock in U1

channel flow as shown in sketch (~). U2 —z,
The changes in the characteristic
quantities, expressed in non- 7/////////////////////////////
hensional form by dividing by the
speed of sound, al, is

Sketch (Al)

al

2% 2CV
— az - U2 -—al+ul
R R

al

(Al)

———. ..————
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Sketch (&)
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Upon transferring to a coordinate
system moving with the normal shocky

.

as shown in sketch (A2), it is found
that the relations given in equation -
(Al) now become

6%=’9,=

(%;?!!=

al I

}

(A2)

Equation (A2) is essentiaJJy unchanged from equation (Al) since it merely
involves the addition and subtraction of the shock velocity, U, in the
numerator of the right side. This observation serves to illustrate the
fact that (P2-Pl)/al and (&-~)/al are independent of coordinate
system. Equation (A2) may be brought into the following form:

In terms
shock table,

of quantities listed in the

uMS= = ;=UL

M
U-l&=—

% %

-(2CV u - U1
—-
R al )]

-(2CV u - U1

)j
“+—
R al

standard steady-flow normal-

(A4) -

—. ———
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Equations (A3) then becomes

6%%), ‘%(% -M%’) - @ -%=)

I

(A5)

(W)p =; (:+”.2) - (:+%)

With reference to any of
the chart of (P2-P1)/al

)

the standard steady-flow normal.-shock tables,
as a function of (~-~) /al csn be constructed.

For comparison, a Q shock in
channel flow would be represented as
in sketch (A3). Upon transformation
to a coordinate system moving with
the shock veloci~, U, the flow would
be represented as in sketch (A4).
The change in the characteristic
quantities for the case of the Q
shock would now be

1///1111//////////lll//lll[
/ 2

u
u/ - ~

)/////////////////////////
Sketch (A3)

[///1/1111111(1111111111111

Ji%L’Rk
Sketch (A4)

(A6)

-———— .
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In terms of quantities listed ti..dxmlard steady-flow normal-shock
tables

—

and equations (A6)then become

(-), =H?-+~2) - (%?+%)

J

Compar~ equations [A8) wtth the corresponding equation for -the
P shock, the following rule can be stated:

~+), = (~), /

.

(A7)

(A8)

(A9)

(%+), . (y), 1
The curves of (& -P=)/al as a function of (Q2-QI)/a= for a P

shock can, therefore, be used for Q shocks by merely interchanging the
cxcdhate smd abscissa.

.

— -. ..—. — —.
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.

.

The second of the necessary charts concerns the entropy change
across a normal shock. The following relation expresses the entropy
change between any two equilibrium conditions of a perfect gas.

(Ale)

For a normal shock, however, the ratios ~/a= aud p=/pl are related
through the Rankine-Hugoniot equations. With the use of a standard set
of steady-flow normal-shock tables, it is therefore possible to compute
(V=-V~)/~ as a function of aJa= only.

M ap_@@ng the method of chm-
acteristics across a normal shock
wave, a complete solution involves a UO~
knowledge of the six quantities as
shown in sketch (A5). In the present
analysis, which is concerned only
with Q shocks, the quantities Pl,
~, %, ~d ~1 are known, either
from boundary conditions or from
previous computations. With the aid
of the chart of (P2-P1)/al as a .

function of (Q2-~)/al, the value of
P= can be determined. According to
the definitions of P aud Q, the flow
velocity and speed of sound may be
computed from the following general
relation:

x

Sketch (A5)

(Au)

. . .—



function of a-Ja10

Strong Entropy Disconttiuities

When a lmge entropy discontinuity exists in a fluid, the pressures
and velocities on each side of the interface are identical. For this
condition, equation (&LO) becomes

(A12)

from which the speed-of-soundratio between
the interface is

T= - 1-1=

%2 eT—=
al

conditions on each side of

(A13)

Since the velocities dn either side of the interface are constant, the
difference between the characteristic quantity P across the entropy
discontinuity is expressed as

Substitution of the
(A13) into equation

( .)=~(%-.=)=~a. ~-l (A14)

expression for the speed-of-soundratio in equation
(A14) gives the following relation:

.

—
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13ya procedure analogous to that u8ed @ obtaining equation (A15),
the foIJ.ow5ngexpression can be written for conditions across the interf-

Combining equations (A15) and (w6) yields

P2 -P. =( P.+Q2)

or

P2 -p== (P=+@)-*

(u6)

}

By a similar procedure to that used in
following expression can be obtained:

Q2-Ql=(Ql +%)

obtaining equation (A17), the

(M.8)
-P

For very smalJ entropy discontinuities, the first term of the series
expmsion for the hyperbolic tangent may be sufficient, and eqyations
(A17) and (AJ-8)reduce to the form given in equation (15) h the text of
this report.

The application of equations
(A17) and (IKL8)to the determination

o~

of the flow quantities across a typi-
cal strong entropy discontinuity can
be shown with reference to sketch (A6).
The quantities Pl, Q=, vl, and 72 are
known from boundary conditions. The
problem is to determine & and P2.
From equations (A17) and (~8), the
values of (P2 - Pl) and (~ - u) can .
be computed from lmown conditions. ~
and P2 can then be computed since
Q2 andP= are kno~m.

x
Sketch (A6)

—.—— _.-— __—._ —.—
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APPENDIX B

TYPICAL INTERACTIONS

The theory of wave interactions is discussed in reference 3. How-
ever, the solution of any actual interaction process requires a procedure
for numerical computation, and this aspect of the problem is hsrdly
touched upon elsewhere in the literature. Accordingly, an attempt is
made here to present a practical method of solution for those titerac-
tions encountered in the present analyses.

Ikberaction of Two Q Shock Waves

This interaction is encountered when the shockwave at the leading
edge of the compression pulse encounters the steady-flow normal shock.
A schematic diagrsm of this interaction is given in sketch (Bl). The

(lot
interaction of the two

,Enfropy discontinuity shock waves results in

Reflected
Com-
bined

x

(1)a single strong
shock wave which moves
upstream with a velocity
intermediate to the
interacting shocks;
(2) a strong entropy
discontinuity which
moves downstream with
the velocity of the.-

,Sketch(Bl)
fluid; and (3) a weak
reflected @isturbauce

which, as shown in reference 5, wilJ be a rarefaction wave. The method
for solution is given in the following outline form:

Given:

1. All conditions (P, Q, U, a, q) in sectors 1, 4, 5.

2. Velocity is constant across entropy discontinuity: Uz = US.

3. Q and ~ are constant across the reflected disturbance.
Q3=Q4, T13= ~.

Find:

1. All

2. The

conditions (P, Q, u, a, q) in sectors 2 and 3.

velocity of the combined shock.

.

—-- —



l@cA TN 2694

Auxiliary Charts (See AppenMx@

1. (P2-P=)/a= vs (~-W) /a= for Q shock.
u

2. (q=-VI)/7R vs ~ for no- shock.

3. Steady-flow normal-shock tables.

Procedure:

1. Assume (~-~)/a=.

2. Obtati (P2-P1)/al from charts of (Pz-Pl)/al vs (@-&)/al for

Q shock.

3. Compute P,2,@, u2j %2.

k. Obtain ?2 from chart of (?=-~l)/Zl VE %!~ for normal shock.

5. Compute (Qs - Q2) from equation (A18). h equation ~fiL8)replace
subscript 1 by subscript 3, and use the given value of ~
in computing the factor (~ + p~)=

6. Compare Q= (computed) with Q3 (given) ~d rePeat stePs 1 ~ough
5 until these quantities are equal.

7. Compute P= from equation (A17) replacing the subscripts as

●

27

iiilicate~in step 5.

8. With ~ from step 6 and Pa from
with the use of equation (All.).

With conditions in sectors 1 and
2 now lmown, the velocity of the result-
ant shock can now be computed. Consider
the motion of this shock as shown in
sketch (B2). When transformed to a
coordinate system moving with the veloc-
ity of the shock, the picture then
assumes the form shown in sketch (B3).
The Rankine-Hugofiot relations may be
used with reference to this latter
sketch. As such,

U=ul - M% al

}

(Ill)

u=% “M%%

step 7, compute ~ and ~

////////////////////1/////llf

/ 2
u~

u, ~
//1////////////l/ll////lJ111

Sketch (B2)

Uj-u Ug- u

/lJllIlillJIJllilllllll I

Sketch (23)

—
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The velocity of the shock U may be determined mom either of the equa-, .
tions (Bl) with the aid of a set of steady-flow normal-shock tables.

A numerical example of this procedure may help. ~ practice it is
found convenient to express all velocities, and also P and Q, as multi-
ples of a standard velocity. In this case the standard velocity is taken
as the standard speed of sound, a. (11.20ft/see), and the values of u,
a, P,and Q listed are actually u/so, a/ao, P/ao, ~d Q/ao. The follow-
ing initial conditions are given in sectors 1, 4-,and 5:

P= = 5.384 U= = 1.274
&

–o

Q =2.836 a= =0.822
z-

P5 = 5.384 ~ = 0.654

%=4.131 a5 =0.957

P4 = 5.450 U4 = 0.290

Q4 = k.870 ah = 1.o34

V5

s = 0.069

VA
— = 0.079
YR

2. Obtain (P=-P=)/a= - 0.227 from chart of (Q2-~)/a= vs (P2-P=)/a~

3* Compute Pa = 50571 U2 = 0.280

Q2 = 5.011 a2 = l.0~

4. ~/al = 1.288, hence (q2-@/?’R =q=/YR = 0.2M
from chart of AT/ZR vs a2/al

.

% = Q4 = 4.87’0

Following the specified procedure, the resulting solution is

1. Assume(~-~)/a= = 2.648

.

.-—
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5. (&7J/7R =0.133 (1-13-TIJ/~=o*0133

- O’13-VJ4CP = 0.0133

Qa

%

6. ~=

Qa =

7. Pa=

us=

%3=

8. mom

as

From

+ P2 = 10.441 Use Qa (given)

- Q~ = 0.139

4.871(computed) as compared to

4.87o (given)

4.432

0.280

0.930

+2—=1.288, MSl =1.966 and~2 = 0.583
al

found in shock tables

eqyation (Bl) U = -0.340

29

Shock Wave

A schematic diagram of

Crossing Transverse

this interaction is

slitB

given in sketch (B4).

{

Transverseslits

1/
lEntropy discontinuityOot I \

k’
Shoe 2 3/-
wove Reflected

/4 disturbance
IS

fl
u

I M \
~x

Sketch (B4)

As shown here, the resultant shock moves upstream and crosses the slJts.
The pressure difference between the channel and the surge chamber causes

fluid to flow out of the channel through the transverse slits. This mass
removal.results in an immediate expansion which interacts with the shock
wave and reduces its strength and velocity. The change in strength of

.-— — — ..-
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the shock
we~ as a

NACA TN 2694

wave introduces an entro~ discontinuity into the fluid, as
small reflected disturbance. The method of solution for this

interaction is given in the folJowing outline form:

Given:

1. All conditions (P, Q, u, a, ?) in sectors 1 and 5.

2. Velocity is constant across entropy discontinuiw: ~ = ~.

3. Q and q =e constant across the reflected disturbance:
~h=q~md~=~. It should be pointed out here that if this
reflected disturbmce should be a compression wave, then the
invariance of q and Q from sector 4 to 5 wLJl not be strictly
valid. Inasmuch as We disturbance is
the variation of T and Q is so small
this analysis, it cannot be detected.

4. Dtiensions of the transverse slits.

Find.:

extremely weak, however,
that, to the accuracy of

1. ~ conditions (P, Q, U, aj q) ~ sectors 2Y 3Y~d 4=

2. The velocity of the shock aftir it has crossed the transverse slits.

Auxiliaxy charts necessary (See Appendix A):

1. (P2-P=)/a= vs (~-~) /a= for normal shock.

2. (va-~l)/7’R vs a2/a= for normal shock.

3* Steady-flow normal-shock tables.

Procedure:

1. Assume (Q=-%)/al.

2. Obtain (P2-Pl)/al from chart.

3. Compute P2, Q2, U2, a=.

4. Obtain ?2= Vs from ch=t.

5. With the aid of equations (15) and (20), compute p~, ~, us, ad
as. Since the average values of the speed of sound and flow
velocity must be used, an iterative procedure is necessary to
perform this step. This iteration can be performed best by first -
using ii= ~ and E = az. lYromthe values of ~ and aa thus
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.

computed, new
process until

values of u and a can be computed. Repeat this
sufficient accuracy is obtatied.

6. Compute (Q.S- c&) from equation (~8) replacing subscript 1 by
subscript k and subscript 2 by subscript 3. ‘Use the ‘@ven tiue
of Q4 in computtig the factor (~ + P~).

7. Compare
until

8. Compute
cated

90 compute
using

Q4(computed) with Q~(given) and repeat steps 1 through 6
these quantities are equal.

P4 from equation (A1.7)replacing the subscripts as indi-
in Step 6. Use ~ from step 7 to compute ~, as.

the speed of the shock after crossing the transverse slits
equation (Bl).

A numerical example of this procedure is presented with l/8-inch
transverse slits on both the top and bottom of the channel snd the fcil.low-
ing conditions given in sectors-l and ~:

P= = 5.384 U~ =“1.274

QI = 2.836 al = 0.822’

P5 = 5=571 ~ = 0.28-0

% = 500U ~ = 1.073

Fold.owingthe specified procedure,

1. Assume ((&-~)/al =2.368.

2. Obtain (P=-P=)/al = 0.177 from chart.

3. Compute P2 =5.529 w = 0.372

& = 4.7s4 * = 1.031

4. lRcom ~/al = 1.255 (V=-TIz)/YR= T14YR= I@ = 0:165

5. By iterative procedure

Qa - Q2 = 0.179

P3 - P= = -0.096

—
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and

P3 =5.433 u~=O.235

~ = 4.963 as = 1.040

6. (74n3)/7R= 0.047

tanh(v4-113)/~=

Q4+~ = 5.OIJ-+5.433= lo.~ Use Q4 (given)

( %-wkp ‘ 0.0047

0.0047

(Q4 - Q~)= (P4- p!)= o=049

7. Q4 = 5.012(computid)as compared to

Q4= 5.011 (given)

%29. Using ~= 1.255, obtain Mal = 1.857 and M~= = 0.604 from

shock tables. ?i%omequation (Bl) U = -0.251

Expansion Wave Overtaking Shock Wave

The leading-edge shock wave of the strong compression pulse is fol-
lowed by an extended expansion zone. This expansion zone propagates
upstream more rapidly than the shock and, hence, overtakes and weakens
the shock. The process is actually a continuous one but, in applying
the method of characteristics,the expansion zone is considered to be
built up stepwise from a series of expansion waves.

— --
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A diagram of this process is shown in sketch (B5). The overtwg
expansion wave interacts with the shock wave and reduces its strength

Oot

disturbance

/

Shock
wave

x

Sketch (B5)

wave

introduces an

33

md velocity. The change in strength of the shock wave
entropy discontinuity into the fluid, as well as a ~ reflected dis-
turbance. The method of solution for this interaction is identical to
that presented previously for the interaction of two Q shock waves.

——. .—



34 NACA TN 2694

Al?mm c

D~ION OF THE INTIAL VALm

CHARACTERISTIC QUANTITIES

,

OF T13E

The velocity profile for a @ven pulse has been superimposed upon
the.steady-flow velocity profile at the time of impending interaction
of the pulse shock with the steady-flow normal.shock. Since the condi-

tions tithe region upstream of the disturb=ce pulse are unchanged by
the presence of the pulse, the speed of sound and SU other properties
of the fluid in this region are known freonthe steady-flow conditions.
It remains necessary, therefore, to evaluate only the speed of sound
throughout the region downstream of the pulse shock. With the velocity
profile of the channel already known, the characteristic quantities can
then be calculated tiomeqmtion (9).

The following procedure can be used to determine the speed of sound
ab immediately downstream of the pulse shock: Let sketch (Cl) represent
the flow conditions in the neighborhood of the upstream edge of the pulse.

olfff~lflljllllllljfl~ll~f
Superimpose a velocity -U on the
flow field, thus converting to a

u~
coordinate system which represents
velocities relative to the upstream

~ ~ edge of the pulse as shown in sketch
(C2). The local speeds of sound,

7/1f///////lllllf//l//lllf ~ smd ab, as well.as the ambient
pressure, temperature, and entropy,

Sketch (Cl) sre independent of coordinate system
and remain unchanged. With reference

l/////////////fflf/llflfffl! to sketch (C2), the fo~owing rela-

=1 tions can be obtained:

U*-U
I

u’ -u

7///////////l/j/lif//iill/f

Sketch (C2)
Us-U

= Msa
% 1

Equations (Cl) can be combined to give

Ua - ub ab
= Msa - Msb ~

%

I (cl)

Ub-u

ab
= Msb

(C2)

— .—.— — -.
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which expresses
ub, aa, ~d pa

conditions across a st,ationsrynormal shock. Since ~,
are already known, the quantities abj M8aj ~d M~h Cm

be determined from equation (C2) by a trial and error cal&lation ~th
the use of any of the standard tables for flow across a normal shock.
The solution to equation (C2) will also determine the pressure ratio
across the shock from which the value of
integrated form of equation (4), namely,

~ can be computed. From the

(C3)

the value of ~ can,eho, be determined.

To compute the speed of sound at all points downstream of the pulse
shock, the following assumptions were made:

1. The entropy is constant from the resx of the pulse shock,
station b, to the end of the channel.

2. The pressure at the end of the pulse, PC, is the same as

the steady-flow pressure at that point.

3. The speed of sound along the pulse varies linearl.ywith the
flow velocity.

Worn assumption (1), the expression
stations b and c is

By assumption (2) and equation (C4), the

for the entropy change between

.pg~g)= o (C4)

speed of sound at the rear of
the pUISe, ac,-c& be determined S&e ab and pb sre bo~. With the
velocity profile of the channel already known, assumption (3) permits
.anevaluation of the speed of sound at all points along the pulse. The
values of the characteristic quantities, P and Q, (eq. (~)) can now be
evaluated at all points in the channel at the time of impending inter-
section of the pulse shock with the steady-flow normal shock.

————.



36 NACA TN 2694

REFERENCES .

1. Kmtrowitz, A. R.: The Formation and Stability of Normal Shock Waves
in Chsmnel Flows. NA.cATN M25, 1947.

20 Riemann, B.: Uber die Fortpflunzung ebener Luftwellen von endlicher
Schwingungsweite. Abhandl.ungender GeseI1.sch&t der Wissenschaften
zu Gottingen, Mathematish-physikalischeKlasse 8, p 43, 1858-59.

3* Kantrowitz,A. R.: Heat Engines Based on Wave Processes. Paper
presented before the Annual Meeting of the A.S.M.E., Nov. 1948.

4. Kahane, A., and Lees, Lester: Unsteady One-Dimensional Flows with
Heat Addition or Entropy Gradients.. Jour. Aero. Sci., vol. 15,
no. 11, 1948.

5. Courant, R., and~iedricks, K. O.: Supersonic Flow and Shock Waves.
Interscience Publishers, New York, 1948.

6. Kantrowitz, A. R., McDonald, E. E., and Perry, R.: The Response of
a Normal Shock in a Channel Flow to Smald.Disturbances Coming from
the Rear of the Channel. Cornell University Graduate School of .

Aeronautical Engineering, April 1949.

7. Hertzberg, A.: An Experimental Investigation of Two-Dimensional
Non-Steady Shock Wave Phenomena. Cornell University Graduate
School of Aeronautical Engineering, Sept. 1949.

/

.

_— —



.

* Cknbw

m

P

?

t— v—.--—- -—- —. —-—-.

F&Um ~- Ghnne/ shqpe ad nazz/e-bAxk ales@ h hsl secthn tffhch number Ei64 (.// ohenshns h hcbes)

T& of wdbmtes

Statkw C%d+R7tes

o .mo
2 .50
,4 .330
6 .s55

B so

m 600
[2 m

(4 .655
m 645
I& .653
m m

.?.5 66.5

.m .ss0
325 .6s?
3.3 .s40
375 .s30
4.0

425 HO

4.6 Sa5

-

I



Ivormabshoc{ equllbrlu~ posh’ons

St’eody-f/ow prof//e

/

Double criti Cal puke

// .- --
r “ -----

1--
// /- -

-=S=

2 4 6 8 /0 /2 /4 /

Distance in inches from first mhvhwm section

w
m

5

i%

Figure 2.- Vivbcity profile of channel showing superimposed pukes in position of impending ~

intersection with normal shock h stable equtllbrr’um position.
w
.F



.

.

NACA TN 2694

/4

/2

/0

8

6

4

2

0

\

1
\
\

I

(c),
1 I

F Second minimum
*ction

I

(b)

I 1 Position of

\
transverse sits

I

position

I A Pulse shocks
I

1 I

I
Steady-flow normai —
shock at stobie 1
equilibrium postion

~

I
r 4 5 6 7 (

Distance from first minimum section, inches

Figure Z-hteruction of critical und double critical puke with steuo’y
flow normal shock for vurious umouffts of muss removal

—
— —



NACA TN 2694
+.4 I I

Pulse area = /.905

o

-.4

–.80 2 4 6 8
Puke length, inches

(b) Velocity profile with length dimension corrected by scale
factor 0.585 to produce desired puke ores.

20 ~6 /2 8 4 0 -4
— LengM along pulse tube, inches P

(a) Choructeristic diagram

-s=
Figure 4.- Anulysis to produce pulse with leading-edge velocity

o’isconfinuif~ A_&-, of -0.6/0 and velocity -profi/e area,

(* m inches) of 1905.

——— . ——



6F

.

.

20

/.6

/.2

Q6

41

/’

20 40 60
Puke tube chamber pressure, psi gage

between pulse tube chomber

velocify-pnfile urea

80

Ond

--



I

I

I

Fl~e 6.- ~erimenta). ap~aratus.

i5

N

s
f=



c

.~

/ ----——

, .~— —

_— --- 7

\

\

\

\
\,

\,,

\

/- ---J

&-J



/r~’’~’730’ r

t —.

t

-—

L——. .————— ——— ——— ——— —————— —L

Mxm’ fillerplote ~

- End of d/ffusor

F/gure 8,- De.wgn of pulse tube. [all a’imenskms In imhes]

1

r5D x //4
s&# flange

I

w
Tap for
compressed

i air Met

114
k,

5 Ti for pressure

goge

.



7F NACA TN 2694 45

(a) Exposure, 1/25 second.

(b) Ex@osure, 1

Figure 9.- Normal shock in channel under

microsecond.

the influence of raudom disturbances
originating downstream; transterse,slits closed.
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(a) Exposure, 1/27 second.

,

(b) Exp?sure, lmicrosecond.
I

Figure 10.- Normal shock in channel under the influence of random disturbances
originating downstream; transverse slits open 1/4 inch.
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